sasusuan ni pitaguras
madjaludjalu manu pazangal a pinasusuan mavan aicu sasusuan ni pitaguras(畢氏定理) (Pythagorean theorem) a sikinemeneman tua vavuduan/tatideqan nua mareka vecik. makaya sinivecik sa papukeljang a a katua b tua drusa a gidigidian nua ta tjelu a putung, sa tja sinivecik c taza calisilisian. a tja kineljang aicu a sasusuan ni pitaguras mavan a sisupusupu sa paseljang matu:[1]
pinapungadan
[remasudj ta vincikan | tinagiljang a remasudj ta vincikan]aicu a sususuan a pinapungadan ti piaguras a nasemupu a segeris a kinasicuayan. pasusangas a 1,000 a cavilj tazua, izua za sisupusupu a kineljangan nua caucau i kacauan. ljakua aicu a tja sinipapukeljang a ngadan taicu a sasusuan ni pitaguras tucu.
sinisupuan
[remasudj ta vincikan | tinagiljang a remasudj ta vincikan]nu namapacunan a sinivecikan a C a tja sipakeljang tua cacalisian nua ta tjelu a putung, sa pakatua zuma a gidigidian nua za tjelu a putung, izua za sinivecikan a A katua B a sipakeljang, mavan aicu a tja sinipakeljangan a sinisupuan nua sasusuan ni pitaguras:
nu namasan aicu a tja kineljangan a laladruqan nua A katua B, manu aicu a tja sisupusupu:
nu nakemeljang itjen ta laladruqan nua C a cacalisian katua tailj a gidigidian (A ka na ika B), manu aicu a tja sisupusupu tua laladruqan nua zumanga a gidigidian:
ka na ika mavan aicu a maumalj a sinisupuan:
saka, aicu a tja kineljang tu nu kemeljang itjen ta laladruqan nua matjadrusa a gidigidian nua ta tjelu a putung, maqatitjen a semupu sa kemeljang tua laladruqan nua sikamasantjelulj a gidigidian.
pinakasaluan
[remasudj ta vincikan | tinagiljang a remasudj ta vincikan]sipatjavat tua pakasalu
[remasudj ta vincikan | tinagiljang a remasudj ta vincikan]a tja sipakasalusalu a masan sepatj a tjelu a putung a pinapeseljang. sa paseljang itjen tua aicu a tjelu a putung itua ta sepatj a putung matu tja mapacuanan taicu a vecik i pasanavalj. a tja sipatjavatan aicu C a tja sipakeljang tua gidigidian nua za sepatj a putung.[2] nu pasuvililj, izua tjaqaca a sepatj a putung tuki tja kineljang aicu a a + b aza gidigidian, saka sikeljangan tua tatideqan naza sepatj a putung aza sisupuan a (a + b)2. penaqulid a patjeseljaseljang a tja mapacunan a laludraqan a cacalisian nua matjasepatj a tjelu a putung a katagiljan tua laladruqan a gidigidian nua sepatj a putung nu tjaivililj. a tja sipatjavatjavat mavan cu a C tua za laludraqan.
a pasuvililj avan cu a masan italj a sisupuspu:
inka maljian mavan cu a masan italj a sipakasalusalu aza pinaseljangan a masan sepatj a tjelu a putung a pasanavalj (right triangle). a tja sipatjavat a a, b katua c taza gidigidian. pinitaladj aza sepatj a tjelu a putung tua ta sepatj a putung. a tja sipatjavat tua laladruqan a gidigidian nua za sepatj a putung a c.[3] ika maljian a tatideqan nua za tjelu a putung tua tatideqan a . saka tja sinipapukeljang a b − a tua gidigidian nua masan italj a kedrian a sepatj a putung; a tja kineljang a (b − a)2 tua tatideqan nua za sepatj a putung. a tjaivililj a tja sipapukeljang tua tatideqan nua tjaqaca a sepatj a putung aicu a sisupusupu sa paseljang matu:
manu tja kineljang taicu a c a laladruqan a gidigidian nua sepatj a putung; aza c2 a tja sipapukeljang tua tatideqan nua za sepatj a putung. saka, mavan cu a tja sisupusupu sa paseljang:
- ↑ Judith D. Sally; Paul Sally (2007). "Chapter 3: Pythagorean triples". Roots to research: a vertical development of mathematical problems. American Mathematical Society Bookstore. p. 63. ISBN 978-0-8218-4403-8.
- ↑ Alexander Bogomolny. "Cut-the-knot.org: Pythagorean theorem and its many proofs, Proof #4". Cut the Knot. Retrieved 4 November 2010.
- ↑ Alexander Bogomolny. "Cut-the-knot.org: Pythagorean theorem and its many proofs, Proof #3". Cut the Knot. Retrieved 4 November 2010.